If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5x^2+x=160
We move all terms to the left:
1.5x^2+x-(160)=0
a = 1.5; b = 1; c = -160;
Δ = b2-4ac
Δ = 12-4·1.5·(-160)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-31}{2*1.5}=\frac{-32}{3} =-10+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+31}{2*1.5}=\frac{30}{3} =10 $
| 20x-100=60 | | 16x-35=13 | | 2x-55=135 | | 3y-100=50 | | -6x=-666 | | -2x=-666 | | 20-100=-4y | | 20-10=-2y | | 5w-9=99 | | (2x-4)^(2x-4)=256 | | 10/y=15y/6 | | 3x=6x12 | | x*1.07=50 | | 3y/4+y=49 | | 4y/4=49 | | (1)/(2)((2)/(3)e-3+2e)=-4((1)/(8)+1-e) | | 4.8x+9=33 | | -10y-7=93 | | 2^2x+6.2^x=16 | | 2.8^x=42 | | 30=j+15 | | 216=-12j | | -234=-18w | | 9c=-180 | | 3/4y+2=5/4y-6 | | 32=7h-3 | | 3(t+6)=0 | | 2(x/4+x+4)=28 | | 9/0=v | | (1)/(3)(s+1.632)=726 | | -x*3+10=x*5-8 | | 5(-7+3n)-4n=-112 |